Abstract
In the context of the stringent automobile emission legislations, this paper proposes a novel compression-assisted decomposition thermochemical sorption energy storage system for recovering engine exhaust waste heat, which is utilized to produce cooling capacity for a refrigerated vehicle. In this system, the desorption pressure of sorbent can be flexibly adjusted by changing the suction pressure of compressor embedded between the sorption bed and condenser, which ensures the stable operation of system even at relatively low exhaust temperatures. Simultaneously, the decomposition reaction increases suction pressure of compressor, so the coefficient of performance (COP) is thus greatly improved. Furthermore, the sorption bed can output cooling capacity for refrigerated compartment when the vehicle is parked. Currently, vehicle emission standards generally adopt World Harmonized Stationary Cycle test, and 13 engine operating points are selected. At an operating point 3 (a low engine load), i.e. 55% speed and 25% torque, the COP of the novel system at an evaporating temperature of −25 °C and a condensing temperature of 45 °C is 1.65, 1.5 times higher than that of conventional one. The weighted average COP under 13 operating points is still up to 1.48. Eventually, the novel system promotes the realization of low-carbon and low-cost refrigerated transportation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have