Abstract

This paper describes observed modal oscillations arising from a feedback mechanism between an acoustic resonance in the exit flow channel and aerodynamic and aeroelastic disturbances in a transonic fan stage. During tests, the fan suffered from rotating stall and surge which were preceded by low frequency pressure fluctuations. Through a range of aerodynamic and aeromechanical instrumentations, it was possible to determine a clear chain of cause and effect, whereby geometrical asymmetries trigger local instabilities and modal oscillations through an interaction with the system acoustics. To the authors knowledge, this is the first time that modal oscillations occurring before stall are attributed to multiphysical interactions, showing that acoustic characteristics of the system can influence the aerodynamic as well as the aeromechanical stability of fans. This bears implications for the stability assessment of fans and compressors because first, the stability margin may be affected by standing waves generated in bypass ducts or combustion chambers, and second, geometrical variations of the rotor blades which are believed to be beneficial for aeromechanical stability may lead to complex coupling phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call