Abstract
We investigate the global existence and large-time behavior of classical solutions to the compressible Euler equations coupled to the incompressible Navier-Stokes equations. The coupled hydrodynamic equations are rigorously derived in [1] as the hydrodynamic limit of the Vlasov/incompressible Navier-Stokes system with strong noise and local alignment. We prove the existence and uniqueness of global classical solutions of the coupled system under suitable assumptions. As a direct consequence of our result, we can conclude that the estimates of hydrodynamic limit studied in [1] hold for all time. For the large-time behavior of the classical solutions, we show that two fluid velocities will be aligned with each other exponentially fast as time evolves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.