Abstract

This study reports control of compressible dynamic stall through management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through dynamic adaptation of the airfoil edge incidence, the formation of a dynamic stall vortex was virtually eliminated for Mach numbers of up to 0.4. Consequently, the leading edge vorticity flux was redistributed enabling retention of the dynamic lift. Of even greater importance was the fact that the drag and pitching moment coefficients were reduced by nearly 50%. The camber variations introduced when the leading edge was drooped are explained to be the source of this benefit. Analysis of the peak vorticity flux levels allowed the determination of minimum necessary airfoil adaptation schedule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.