Abstract
In this paper, laminar flow past a rotating circular cylinder placed in a compressible uniform stream is investigated via a two-dimensional numerical simulation and the compressibility effects due to the combination of the free-stream and cylinder rotation on the flow pattern such as forming, shedding, and removing of vortices and also the lift and drag coefficients are studied. The numerical simulation of the flow is based on the discretization of convective fluxes of the unsteady Navier-Stokes equations by second-order Roe’s scheme and an explicit finite volume method. Because of the importance of the time dependent parameters in the solution, the second-order time accurate is applied by a dual time stepping approach. In order to validate the operation of a computer program, some results are compared with previous experimental and numerical data. The results of this study show that the effects due to flow compressibility such as normal shock wave caused the interesting variations on the flow around the cylinder even at a free-stream with a low Mach number. At incompressible flow around the rotating cylinder, increasing the speed ratio, α (ratio of the surface speed to free-stream velocity), causes the ongoing increase in the lift coefficient, but in compressible flow for each free-stream Mach number, increasing the speed ratio results in obtaining a limited lift coefficient (a maximum mean lift coefficient). In addition, results from the compressible flow indicate that by increasing the free-stream Mach number, the maximum mean lift coefficient is decreased, while the mean drag coefficient is increased. It is also found that by increasing the Reynolds number at low Mach numbers, the maximum mean lift coefficient and critical speed ratio are decreased and the mean drag coefficient and Strouhal number are increased. However at the higher Mach numbers, these parameters become independent of the Reynolds number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.