Abstract

Effects of compressibility on the double tearing modes (DTMs) in rotating plasmas are numerically investigated by using a compressible magnetohydrodynamics (MHD) model. It is found that due to the compressibility effects, the threshold of the interlocking magnetic island width in the slow and intermediate rotation regimes is larger than the counterpart in the incompressible plasmas. In the fast rotation regime, the compressible effect makes the DTM islands interlock more easily and faster. Moreover, in the very fast rotation regime, the plasma rotation can more effectively suppress the DTM islands. The scalings of the interlocking threshold in the different rotation regimes are obtained. Effects of plasma viscosity and beta on the DTM interlocking in the compressible plasmas are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.