Abstract

A high volume rate and high performance ultrasound imaging method based on a matrix array is proposed by using compressed sensing (CS) to reconstruct the complete dataset of synthetic transmit aperture (STA) from three-dimensional (3D) diverging wave transmissions (i.e. 3D CS-STA). Hereto, a series of apodized 3D diverging waves are transmitted from a fixed virtual source, with the ith row of a Hadamard matrix taken as the apodization coefficients in the ith transmit event. Then CS is used to reconstruct the complete dataset, based on the linear relationship between the backscattered echoes and the complete dataset of 3D STA. Finally, standard STA beamforming is applied on the reconstructed complete dataset to obtain the volumetric image. Four layouts of element numbering for apodizations and transmit numbers of 16, 32 and 64 are investigated through computer simulations and phantom experiments. Furthermore, the proposed 3D CS-STA setups are compared with 3D single-line-transmit (SLT) and 3D diverging wave compounding (DWC). The results show that, (i) 3D CS-STA has competitive lateral resolutions to 3D STA, and their contrast ratios (CRs) and contrast-to-noise ratios (CNRs) approach to those of 3D STA as the number of transmit events increases in noise-free condition. (ii) the tested 3D CS-STA setups show good robustness in complete dataset reconstruction in the presence of different levels of noise. (iii) 3D CS-STA outperforms 3D SLT and 3D DWC. More specifically, the 3D CS-STA setup with 64 transmit events and the Random layout achieves ~31% improvement in lateral resolution, ~14% improvement in ratio of the estimated-to-true cystic areas, a higher volume rate, and competitive CR/CNR when compared with 3D DWC. The results demonstrate that 3D CS-STA has great potential of providing high quality volumetric image with a higher volume rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.