Abstract
A novel beamforming technique, named compressed sensing based synthetic transmit aperture (CS-STA) is proposed to speed up the acquisition of ultrasound imaging. This technique consists of three steps. First, the ultrasound transducer transmits randomly apodized plane waves for a number of times and receives the backscattered echoes. Second, the recorded backscattered echoes are used to recover the full channel dataset of synthetic transmit aperture (STA) with a compressed sensing (CS) reconstruction algorithm. Finally, an STA image is beamformed from the recovered full STA dataset. As CS allows recovering a signal from its few linear measurements with high probability, CS-STA is capable of recovering the STA image with fewer firings (i.e., higher frame rate) and retaining the high resolution of STA. In addition, the contrast of the STA image can be improved at the same time owing to the higher energy of plane wave firing in CS-STA. Simulations demonstrate that CS-STA is capable of recovering the STA channel dataset with a smaller number of firings. The performance of CS-STA is evaluated in phantom experiments through comparisons with STA, multi-element STA, conventional focused mode and coherent plane wave imaging. The results demonstrate that, implemented with the same frame rate, CS-STA achieves higher or comparable resolution and contrast. Moreover, comparisons are conducted on the biceps brachii muscle and thyroid of a human subject, and the results demonstrate the feasibility and competitiveness of CS-STA in the in vivo conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.