Abstract

Magnetic resonance imaging (MRI) is a dynamic and safe imaging technique in medical imaging. Recently, parallel MRI (pMRI) is widely used for accelerating conventional MRI. Both frequency and image domain-based reconstructions are the most attractive methods for generating the image from multi-channel k-space data. Compressed sensing (CS) is a recently used procedure to reduce the acquisition time of conventional MRI. This reduction is achieved by taking fewer measurements from the fully sampled k-space data. Therefore, applying the CS technique in pMRI is the most emerging way for further improving the acquisition time that is a tremendous research interest. However, as the phase encoding plane may be perpendicular or parallel to the coil elements plane, finding the exact domain for CS in pMRI reconstruction is a major challenging issue. In this work, the application of the CS technique in pMRI in both domains is investigated. Later some widely used methodologies are presented as the nonlinear reconstruction algorithm of CS in pMRI. Finally, a discussion is performed based on CS in pMRI to perceive the reality of different reconstruction algorithms at a glance for finding preferred methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.