Abstract

Oxygen vacancies (OVs) play important roles on any oxide catalysts. In this work, using an investigation of the OV effects on ZnO(101̅0) for CO and H2 activation as an example, we demonstrate, via machine learning potentials (MLPs), genetic algorithm (GA)-based global optimization, and density functional theory (DFT) validations, that the ZnO(101̅0) surface with 0.33 ML OVs is the most likely surface configuration under experimental conditions (673 K and 2.5 MPa syngas (H2:CO = 1.5)). It is found that a surface reconstruction from the wurtzite structure to a body-centered-tetragonal one would occur in the presence of OVs. We show that the OVs create a Zn3 cluster site, allowing H2 homolysis and C-O bond cleavage to occur. Furthermore, the activity of intrinsic sites (Zn3c and O3c sites) is almost invariable, while the activity of the generated OV sites is strongly dependent on the concentration of the OVs. It is also found that OV distributions on the surface can considerably affect the reactions; the barrier of C-O bond dissociation is significantly reduced when the OVs are aligned along the [12̅10] direction. These findings may be general in the systems with metal oxides in heterogeneous catalysis and may have significant impacts on the field of catalyst design by regulating the concentration and distribution of the OVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.