Abstract
Abstract Oxygen vacancies with different charge states in cubic LaAlO 3 were investigated using first-principles calculation based on the density functional theory and generalized gradient approximation. In the presence of oxygen vacancy, extra level appears in the energy band gap. From the formation energies, it is found that oxygen vacancy is thermodynamically favorable under O-poor condition. Oxygen vacancies of and are the most stable charge states with the changes of the Fermi level position. Moreover, the oxygen vacancy in LaAlO 3 has a negative U behavior and it is energetically favorable for the oxygen vacancy to trap two holes when the holes are injected into the oxide. Therefore, oxygen vacancy is a main source of charge traps in LaAlO 3 high- k dielectric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.