Abstract
Various phosphomolybdates were synthesized using cations from Groups 1 and 2 of the periodic table. These compounds were of the form M x H3−xn [PMo12O40], with n being the cationic charge (+1 or +2). XRD analysis shows pure phosphomolybdic acid has a triclinic structure. A body centered cubic (BCC) structure gradually develops with addition of Group 1 cations, and the triclinic phase is completely replaced by the BCC phase once metal cations occupy a volume greater than 9–11 A3 per phosphomolybdate anion. The Group 2 compounds do not form a cubic phase, however the triclinic phase distorts once cationic volume is greater about 5 or 6 A3 and appears to become somewhat amorphous. Isobutane selective oxidation over the compounds yielded methacrolein (primary product), 3-methyl-2-oxetanone (lactone), acetic acid, propene, methacrylic acid, carbon dioxide and water as products. Propene was formed over the Group 1 compounds exclusively and methacrylic acid formation was observed with BaH[PMo12O40] only. Products form via two distinct processes: Category 1 product has an exponential profile and coverage is consistent with a Langmuir model, Category 2 formations are consistent with desorptions from within the bulk of the substrates. Methacrolein forms via both Category 1 and 2 processes, whilst all other products are formed by Category 2 exclusively. A rigorous kinetic analysis yielded accurate activation parameters. Category 1 methacrolein formation apparent activation energies ranged from 34.7 ± 1.3 to 119 ± 4 kJ mol−1. Category 2 formations ranged from 34.3 ± 0.4 to 726 ± 172 kJ mol−1. No relationship between activity and composition or structure could be ascertained, despite investigation into correlations using several different models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.