Abstract

Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.