Abstract

Biodiesel can be produced by domestic resources like straight vegetable oil, animal oil/fats, tallow and waste cooking oil. Its use, instead of the conventional diesel, contributes to the reduction of the CO2 emissions. Production of biodiesel occurring from base catalyzed transesterification of the oil, direct acid catalyzed transesterification of the oil and/or conversion of the oil to its fatty acids and then to biodiesel. Two types of catalytic mechanisms can be used for the biodiesel production. These are the homogenous and heterogeneous catalytic processes. However, heterogeneous catalysis can be identified as solid and enzymatic. In addition solid heterogeneous catalysts can be classified as acid or base. Ηeterogeneous solid acid catalysts are of a great importance for biodiesel production. The most known catalysts of this type are zeolites, mixed oxides, sulfonic acid group catalysts, sulfonic acid modified mesoporus silica, heteropoly acids and polyoxonetalates, supported and substituted heteropoly acids and solid acids catalysts based in waste carbon. The major advantages of this type of catalysts are their reusability, their non-toxic and non-corrosive attributes as well as decrement of the biodiesel production cost.

Highlights

  • The global warming caused by the abundance of CO2, which occurs due to the ever-increasing human population [1], in the atmosphere and the limitations of global resources of fossil and nuclear fuel, has necessitated an urgent search for alternative sources of energy to meet the future demands

  • Solid acid catalysts were used in order to avoid the low biodiesel efficiency in the transesterification reaction by using low grade feedstocks, during the alkaline catalysis [31]

  • Compared to the other catalysts CsHPW, due to its porous structure and higher surface acidity, are more stable and reusable for biodiesel production based on low quality oils with free fatty acids (FFAs)

Read more

Summary

Introduction

The global warming caused by the abundance of CO2, which occurs due to the ever-increasing human population [1], in the atmosphere and the limitations of global resources of fossil and nuclear fuel, has necessitated an urgent search for alternative sources of energy to meet the future demands. Solid acid catalysts were used in order to avoid the low biodiesel efficiency in the transesterification reaction by using low grade feedstocks, during the alkaline (basic) catalysis [31].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.