Abstract

The popularity of deep reinforcement learning (DRL) applications in economics has increased exponentially. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated dynamic economics systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into the state-of-the-art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems in the presence of risk parameters and the ever-increasing uncertainties.

Highlights

  • Deep learning (DL) techniques are based on the use of multi-neurons that rely on the multi-layer architectures to accomplish a learning task

  • We present the formula of the vital parts of the Convolutional Neural Networks (CNNs), which are the convolution layers

  • We present the formula of the vital parts of the CNNs, which are the convolution of X, and d counts the channels

Read more

Summary

Introduction

Deep learning (DL) techniques are based on the use of multi-neurons that rely on the multi-layer architectures to accomplish a learning task. In DL, the neurons are linked to the input data in Mathematics 2020, 8, 1640; doi:10.3390/math8101640 www.mdpi.com/journal/mathematics. In the structure of a multi-layer, every node takes the outputs of all the prior layers in order to represent outputs set by diminishing the approximation of the primary input data, while multi-neurons learn various weights for the same data at the same time. DL enables predicting and investigating complicated market trends compared to the traditional algorithms in ML. DL presents great potential to provide powerful tools to learn from stochastic data arising from multiple sources that can efficiently extract complicated relationships and features from the given data. DL is reported as an efficient predictive tool to analyze the market [3,4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.