Abstract

AbstractNumerical weather prediction (NWP) models, which attempt to simulate the full state of the atmosphere, come with many options for dealing with processes that are unable to be explicitly resolved by the model. These model parameterizations are an ongoing area of research in atmospheric science. However, with continuous contributions from the research community and subsequent upgrade of the NWP codes, there are often many options for each unresolved process—leaving the user confronted with potentially thousands of ways to configure the model. We use the weather research and forecasting (WRF) model to forecast global horizontal irradiance (GHI) and undertake the task of narrowing down these options for a location in Qinghai, China. We show that optimizing the configuration of the WRF model based on the type of day (sunny, partly cloudy, or cloudy) is 13.6% better than using a single best configuration for all types of days. We also show that this performance improvement holds true for a longer 3‐month test period (17.8% improvement).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.