Abstract

On any given day, traffic flow managers must often rely on past experience and intuition when developing traffic flow management initiatives that mitigate imbalances between the aircraft demand and the weather impacted airport capacity. The goal of this study was to build on recent efforts to apply data mining classification and clustering algorithms to vast archives of historical weather and air traffic data to identify patterns and past decisions that can ultimately inform day-of-operations decision-making. More specifically, this study identified similar weather impacted days at select U.S. airports, and analyzed the traffic management initiatives implemented on these representative days. The identification of the similar days was accomplished by applying a decision tree algorithm to the hourly Localized Aviation Model Output Statistics Program observations and the arrival delays for Newark Liberty International Airport. The branches from the trained decision tree were subsequently pruned to identify four weather conditions that resulted in medium to high delays for the arrivals scheduled to Newark in 2012. Using these weather conditions, four, daily airport-level Weather Impacted Traffic Index values were calculated using the Localized Aviation Model Output Statistics Program observations and the 2012 scheduled arrival counts from the FAAs Aviation System Performance Metric system. The four, daily Weather Impacted Traffic Index values for 2012 were subsequently clustered using an Expectation Maximization clustering algorithm, and nine unique types of weather days at Newark were identified. By far the most prominent type of day at Newark was a day associated with relatively good weather conditions, where there was little convective activity, winds were low, ceilings and visibility were high and there was little precipitation. Moderate levels of convective activity characterized the next most prominent type of day. Days with persistently high winds or low ceiling and visibility levels were relatively rare in 2012. Lastly, the frequency at which Ground Delay Programs, Ground Stops and Miles-in-Trail restrictions were implemented on each of the typical types of days at Newark were analyzed. Based on the results, it does appear as if the usage of Miles-in-Trail, Ground Delay Program and Ground Stop restrictions correlates well with the severity of the weather associated with each unique type of weather impacted day at Newark. Furthermore, the results demonstrate that it is feasible to use historical weather and air traffic archives to provide guidance on the types of traffic management restrictions to implement in response to the weather conditions impacting an airport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call