Abstract

Detailed physics of the third quadrant electrical characteristics of 1.2-kV rated 4H-SiC accumulation (Acc) and inversion (Inv) channel MOSFETs, based on experimentally measured data and TCAD numerical simulations, are described in this paper for the first time. The power MOSFETs with various channel lengths (0.3, 0.5, 0.8, 1.1 $\mu \text{m}$ ) used in this paper were fabricated in a 6-in commercial foundry. Numerical simulations verified that there are two current paths in the third quadrant: 1) through the base region and 2) through the p-n body diode. This paper demonstrates that the Acc MOSFETs have a smaller third quadrant knee voltage ( ${V}_{{\text {knee}}})$ of −1.2 V compared with −1.9 V for the Inv MOSFETs (at ${V}_{g} = {0}$ V and room temperature). Numerical simulations show that this difference is due to a smaller potential barrier for electron transport from the drain to the source in the base region for accumulation channel devices than inversion channel devices. Acc devices are shown to have a lower voltage drop in the third quadrant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.