Abstract
In this paper, we undertake a novel two-pronged investigation into the human recognition of deepfake speech, addressing critical gaps in existing research. First, we pioneer an evaluation of the impact of prior information on deepfake recognition, setting our work apart by simulating real-world attack scenarios where individuals are not informed in advance of deepfake exposure. This approach simulates the unpredictability of real-world deepfake attacks, providing unprecedented insights into human vulnerability under realistic conditions. Second, we introduce a novel metric to evaluate the quality of deepfake audio. This metric facilitates a deeper exploration into how the quality of deepfake speech influences human detection accuracy. By examining both the effect of prior knowledge about deepfakes and the role of deepfake speech quality, our research reveals the importance of these factors, contributes to understanding human vulnerability to deepfakes, and suggests measures to enhance human detection skills.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.