Abstract

Quantitative structure-activity relationship (QSAR) modeling can be used to predict the toxicity of ionic liquids (ILs), but most QSAR models have been constructed by arbitrarily selecting one machine learning method and ignored the overall interactions between ILs and biological systems, such as proteins. In order to obtain more reliable and interpretable QSAR models and reveal the related molecular mechanism, we performed a systematic analysis of acetylcholinesterase (AChE) inhibition by 153 ILs using machine learning and molecular modeling. Our results showed that more reliable and stable QSAR models (R2 > 0.85 for both cross-validation and external validation) were obtained by combining the results from multiple machine learning approaches. In addition, molecular docking results revealed that the cations and organic anions of ILs bound to specific amino acid residues of AChE through noncovalent interactions such as π interactions and hydrogen bonds. The calculation results of binding free energy showed that an electrostatic interaction (ΔEele < -285 kJ/mol) was the main driving force for the binding of ILs to AChE. The overall findings from this investigation demonstrate that a systematic approach is much more convincing. Future research in this direction will help design the next generation of biosafe ILs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.