Abstract
In order to assess the fate and persistence of volatile organic compounds (VOCs) in the atmosphere, it is necessary to determine their oxidation rate constants for their reaction with ozone (kO3). However, given that experimental values of kO3 are only available for a few hundred compounds and their determination is expensive and time-consuming, developing predictive models for kO3 is of great importance. Thus, this study aimed to develop reliable quantitative structure-activity relationship (QSAR) models for 302 values of 149 VOCs across a broad temperature range (178-409 K). The model was constructed based on the combination of a simplified molecular-input line-entry system (SMILES) and temperature as an experimental condition, namely quasi-SMILES. In this study, temperature was incorporated in the models as an independent feature. The hybrid optimal descriptor generated from the combination of quasi-SMILES and HFG (hydrogen-filled graph) was used to develop reliable, accurate, and predictive QSAR models employing the CORAL software. The balance between the correlation method and four different target functions (target function without considering IIC or CII, target function using each IIC or CII, and target function based on the combination of IIC and CII) was used to improve the predictability of the QSAR models. The performance of the developed models based on different target functions was compared. The correlation intensity index (CII) significantly enhanced the predictability of the model. The best model was selected based on the numerical value of Rm2 of the calibration set (split #1, Rtrain2 = 0.9834, Rcalibration2 = 0.9276, Rvalidation2 = 0.9136, and calibration = 0.8770). The promoters of increase/decrease for log kO3 were also computed based on the best model. The presence of a double bond (BOND10000000 and $10 000 000 000), absence of halogen (HALO00000000), and the nearest neighbor codes for carbon equal to 321 (NNC-C⋯321) are some significant promoters of endpoint increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.