Abstract

BackgroundTef (Eragrostis tef) is a C4 plant known for its tiny, nutritious, and gluten-free grains. It contains higher levels of protein, vitamins, and essential minerals like calcium (Ca), iron (Fe), copper (Cu), and zinc (Zn) than common cereals. Tef is cultivated in diverse ecological zones under diverse climatic conditions. Studies have shown that tef has great diversity in withstanding environmental challenges such as drought. Drought is a major abiotic stress severely affecting crop productivity and becoming a bottleneck to global food security. Here, we used in silico-based functional genomic analysis to identify drought-responsive genes in tef and validated their expression using quantitative RT-PCR.ResultsWe identified about 729 drought-responsive genes so far reported in six crop plants, including rice, wheat, maize, barley, sorghum, pearl millet, and the model plant Arabidopsis, and reported 20 genes having high-level of GO terms related to drought, and significantly enriched in several biological and molecular function categories. These genes were found to play diverse roles, including water and fluid transport, resistance to high salt, cold, and drought stress, abscisic acid (ABA) signaling, de novo DNA methylation, and transcriptional regulation in tef and other crops. Our analysis revealed substantial differences in the conserved domains of some tef genes from well-studied rice orthologs. We further analyzed the expression of sixteen tef orthologs using quantitative RT-PCR in response to PEG-induced osmotic stress.ConclusionsThe findings showed differential regulation of some drought-responsive genes in shoots, roots, or both tissues. Hence, the genes identified in this study may be promising candidates for trait improvement in crops via transgenic or gene-editing technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call