Abstract

Efficient carbon emission reduction technologies in buildings are necessary for achieving the “Dual carbon” goal in China. In this study, a comprehensive evaluation model is proposed to assess the effect of carbon emission reduction based on the analytic hierarchy process–entropy weight–coefficient of variation model which takes newly built residential buildings in Zhuzhou City as the research object. The results show that the preferred materials for the roof and exterior walls of the building’s envelope structure were flame-retardant extruded polystyrene boards, and porous shale bricks were preferred as the main materials for the exterior walls. In addition, the rooftop solar photovoltaic system and energy-saving air conditioning technology were suitable in terms of being renewable and were better utilized. In the end, carbon emissions were significantly reduced when using the building decarbonization technologies. This study provides a new reference for choosing materials and technologies for the design of residential buildings in Hunan Province and even other regions with hot summers and cold winters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call