Abstract

Energy-saving performance of green technology for building projects has become the research hot spot. Using three reference simulation models of multi-story residential buildings designed located in Guangzhou city with hot summer and warm winter, this study simulated and identified critical energy-influencing factors in a traditional design. Green (renovation) technologies design were presented to enhance the conventional technique's energy-saving performances. DesignBuilder software, Pareto rule, and assessment index were used to analyze and identify the proper green technology for multi-story residential buildings in Guangzhou city. The results show that residential buildings' energy consumption in Guangzhou city mainly comes from five critical factors. The energy-saving performance from changing an envelope structure measures is the largest, reaching total sensitivities of 52.95% for 4-story frame structure, 54.06% for 3-story frame structure, and 60.59% for 2-story frame structure and reaching 16.14% of the total contribution for 4-story frame structure, 16.76% for 3-story frame structure, and 17.89% for 2-story frame structure, respectively. Based on this study, the managerial implications for decision-makers are presented. In a green energy-saving renovation technologies design of multi-story residential buildings in Guangzhou city with hot summer and warm winter, priority should be given to the passive technologies. Then enhance the energy-saving performance combined with appropriate active technologies. This case study research results guide decision-makers to improve multi-story residential buildings' energy-saving performance in similar regions with hot summer and warm winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call