Abstract

Quantitative left ventricular mass (LVM) as well as regional strain values may be obtained from full-volume real time 3D echocardiography data via semi-automated feature tracking and represent indices of heart function, both in health and disease. Fresh adult porcine and ovine hearts were passively pumped to simulate normal cardiac motion at stroke volumes (SVs) varying from 30 to 70 mL. A 3V-D Matrix probe, interfaced with a GE Vivid E9 ultrasound system, was used to image each heart at baseline conditions and after simulated myocardial infarction (MI). The 4D LV quantification function of EchoPAC PC was used to quantify the LVM and longitudinal and circumferential strain (LS & CS) of LV segments at each SV prior and subsequent to simulated MI. LVM was validated by volumetric displacement, while LS and CS values were compared to sonomicrometry-based strain. Linear regression analyses show excellent correlations in LVM, LS, and CS between the 4D echo and volumetric/sonomicrometric displacement with R(2) values of 0.99, 0.88, and 0.67, respectively. Bland-Altman analyses for all variables validate the compatibility of both methods. It was also determined that EchoPAC PC was able to detect a decrease in LS and CS in the relevant segments between pre- and post-MI at all SVs (P < 0.05). EchoPAC PC is a robust utility with the ability to accurately obtain quantitative LVM, LS, and CS values from 4D echo volumes and has the potential to improve the yield of clinical studies in cases of suspected MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.