Abstract

BackgroundThe utilization of Chlorella for the dual goals of biofuel production and wastewater nutrient removal is highly attractive. Moreover, this technology combined with flue gas (rich in CO2) cleaning is considered to be an effective way of improving biofuel production. However, the sterilization of wastewater is an energy-consuming step. This study aimed to comprehensively evaluate a cost-effective method of culturing Chlorella pyrenoidosa in unsterilized piggery wastewater for biofuel production by sparging air or simulated flue gas, including algal biomass production, lipid production, nutrient removal rate and the mutual effects between algae and other microbes.ResultsThe average biomass productivity of C. pyrenoidosa reached 0.11 g L−1 day−1/0.15 g L−1 day−1 and the average lipid productivity reached 19.3 mg L−1 day−1/30.0 mg L−1 day−1 when sparging air or simulated flue gas, respectively. This method achieved fairish nutrient removal efficiency with respect to chemical oxygen demand (43.9%/55.1% when sparging air and simulated flue gas, respectively), ammonia (98.7%/100% when sparging air and simulated flue gas, respectively), total nitrogen (38.6%/51.9% when sparging air or simulated flue gas, respectively) and total phosphorus (42.8%/60.5% when sparging air or simulated flue gas, respectively). Culturing C. pyrenoidosa strongly influenced the microbial community in piggery wastewater. In particular, culturing C. pyrenoidosa enriched the abundance of the obligate parasite Vampirovibrionales, which can result in the death of Chlorella.ConclusionThe study provided a comprehensive evaluation of culturing C. pyrenoidosa in unsterilized piggery wastewater for biofuel production. The results indicated that this cost-effective method is feasible but has considerable room for improving. More importantly, this study elucidated the mutual effects between algae and other microbes. In particular, a detrimental effect of the obligate parasite Vampirovibrionales on algal biomass and lipid production was found.

Highlights

  • The utilization of Chlorella for the dual goals of biofuel production and wastewater nutrient removal is highly attractive

  • Biomass and biofuel production of C. pyrenoidosa According to the concentration range of nutrients reported in the previous literatures [18,19,20,21,22,23,24,25,26,27,28,29,30,31], the supernatant of piggery wastewater was diluted (1:4) with sterile water before used for culturing microalgae

  • The growth potential of C. pyrenoidosa sparged with simulated flue gas was higher than that of C. pyrenoidosa sparged with air (Fig. 1a)

Read more

Summary

Introduction

The utilization of Chlorella for the dual goals of biofuel production and wastewater nutrient removal is highly attractive. This technology combined with flue gas (rich in ­CO2) cleaning is considered to be an effective way of improving biofuel production. This study aimed to comprehensively evaluate a cost-effective method of culturing Chlorella pyrenoidosa in unsterilized piggery wastewater for biofuel production by sparging air or simulated flue gas, including algal biomass production, lipid production, nutrient removal rate and the mutual effects between algae and other microbes. Results: The average biomass productivity of C. pyrenoidosa reached 0.11 g ­L−1 ­day−1/0.15 g ­L−1 ­day−1 and the average lipid productivity reached 19.3 mg ­L−1 ­day−1/30.0 mg ­L−1 ­day−1 when sparging air or simulated flue gas, respectively. The eco-friendly biotechnology of using flue gas to cultivate microalgae has been widely explored [8, 9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call