Abstract

A comprehensive Eulerian approach for integrating a three-phase CFD model, a sophisticated detailed model for radiation transport, and a transport equation for algal growth kinetics is developed and utilized to predict the performance of a Taylor vortex algal photobioreactor. Simulation predictions are compared with corresponding experimental data and with simulation predictions obtained using the more commonly employed Lagrangian particle tracking method. The Eulerian simulations correctly predict the experimental trend that biomass productivity increases with increased rates of mixing, and they also suggest that there are limits to these productivity increases as the mixing rate becomes very large. Simulation over-prediction of biomass productivity at high azimuthal Reynolds numbers can be attributed to the fact that at high biomass loadings most radiation is absorbed near illuminated reactor surfaces, and it becomes increasingly important, but also more difficult, to properly resolve the thinning hydrodynamic and radiative boundary layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.