Abstract

A multiphysics model has been developed to predict the effects of fluid mixing and shear stress on microalgal growth in an airlift photobioreactor. The model integrates multiphase flow dynamics, radiation transport, shear stress, and algal growth kinetics using an Eulerian approach. The model is first validated by comparing its predictions with experimental data, and then the radiation transport and algal growth kinetics submodels are added to predict biomass accumulation under different flow conditions. The simulations correctly predict biomass growth curves for a wide range of superficial gas flow rates and demonstrate that biomass productivity increases with increased gas flow rate due to better light delivery to microorganisms. However, at the higher gas flow rates considered, shear stress on microorganisms inhibits biomass growth. Lastly, it is shown that the Eulerian approach used here provides a less cumbersome computational approach and provides better predictions than the circulation time and Lagrangian approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.