Abstract

BackgroundBanding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia. Interphase FISH (iFISH) is a way out here, however, testing many probes at the same time is protracted and expensive. Here multiplex-ligation-dependent-probe-amplification (MLPA) was used retrospectively in chronic lymphocytic leukemia (CLL) samples initially studied by banding cytogenetics and iFISH. Detection rates of iFISH and MLPA were compared and thus a cost-efficient scheme for routine diagnostics is proposed.ResultsBanding cytogenetics was done successfully in 67/85 samples. DNA was extracted from all 85 CLL samples. A commercially available MLPA probe set directed against 37 loci prone to be affected in hematological malignancies was applied. Besides, routine iFISH was done by commercially available probes for following regions: 11q22.3, 12p11.2-q11.1, 13q14.3, 13q34, 14q32.33 and 17p13.1. MLPA results were substantiated by iFISH using corresponding locus-specific probes.Aberrations were detected in 67 of 85 samples (~79%) applying banding cytogenetics, iFISH and MLPA. A maximum of 8 aberrations was detected per sample; however, one aberration per sample was found most frequently. Overall 163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding cytogenetics, 95 were found by MLPA (~58%) and 100 (~61%) by routine iFISH. MLPA was not able to distinguish reliably between mono- and biallelic del(13)(q14.3q14.3), which could be easily identified as well as quantified by routine iFISH. Also iFISH was superior to MLPA in samples with low tumor cell load. On the other hand MLPA detected additional aberrations in 22 samples, two of them being without any findings after routine iFISH.ConclusionsBoth MLPA and routine iFISH have comparable detection rates for aberrations being typically present in CLL. As MLPA can detect also rare chromosomal aberrations it should be used as an initial test if routine cytogenetics is not possible or non-informative. Still iFISH should be used additionally to distinguish mono- from biallelic deletions and also to determine rate of mosaicism for 13q14.2 to 13q14.3. In case MLPA is negative the corresponding CLL samples should be tested at least by iFISH using the standard probe set to.Electronic supplementary materialThe online version of this article (doi:10.1186/s13039-014-0079-2) contains supplementary material, which is available to authorized users.

Highlights

  • Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia

  • A hallmark of Chronic lymphocytic leukemia (CLL) is the presence of cytogenetic abnormalities; the latter help to estimate a patient’s prognosis more accurately and may provide insights into disease pathogenesis [3]

  • As summarized and 146 ones as detected or confirmed by Interphase FISH (iFISH); samples contributing to the discordant results of MLPA and iFISH are marked with asterisk *, ** or ‘plus-sign’ +

Read more

Summary

Introduction

Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia. (iv) Less frequently observed aberrations in CLL are deletions in 6q associated with intermediate prognosis, 9p21 and 10q23, total or partial trisomies of chromosomes 3, 8, 18, or 19, and duplications in 2p24, the prognostic significance for these aberrations is unknown [1,10,11]. These aberrations were either detected applying cytogenetics and/or interphase fluorescence in situ hybridization (iFISH) [3] or more recently multiplex ligation-dependent probe amplification (MLPA) [7]. Still iFISH can more reliably detect low level mosaics and mosaics of mono- and biallelic deletions [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.