Abstract
Abstract The recent detection of the helium hydride ion (HeH+) in the planetary nebula NGC 7027 has inspired studies revisiting the dominant processes for its formation and destruction. Because radiative association is the primary formation mechanism for the helium hydride ion at all redshifts, and many early universe chemistry models rely on accurate results for calculations of destruction rates, we explicitly computed rovibrationally distinguished partial cross sections and rate coefficients of helium hydride formation via radiative association, and modeled the abundance of HeH+ in the early universe using recently available rate coefficients for all relevant formation and destruction reactions. The rate coefficients for the radiative association formation reaction of HeH+ and radiative charge transfer in He+ + H collisions were obtained using two distinct methods. Our newly calculated rate coefficients along with other recently reported He chemistry reactions and updated cosmological parameters were incorporated into a new calculation of the abundance of HeH+ for redshifts between z = 10 and 4000. We find that the abundance of the helium hydride ion is at least three orders of magnitude larger than previous predictions for redshifts near z = 20. Rovibrationally distinguished radiative association rate coefficients are given as a function of temperature, and the significance of stimulated radiative association for redshifts z > 400 is also shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.