Abstract

In this study, the interannual variability (IAV) of Indian Summer Monsoon (ISM) is investigated using multi-year (1982‒2016) seasonal scale simulations (May‒September) of the regional climate model RegCM4. Model-simulated fields such as surface temperature, wind and rainfall are validated initially to testify the climatological behaviour of ISM. Subsequently, different aspects of IAV associated with ISM are discussed primarily focusing on model simulated rainfall and are verified against high-resolution rainfall analysis from India Meteorological Department (IMD). Analysis indicated that RegCM4 shows reasonable accuracy in simulating major large-scale features, however, has cold bias over entire India and wet (dry) bias over northwest and peninsular (central) India. Easterly (westerly) bias is noticed in the model simulated low (upper) level wind that affects regional Hadley circulation. The cold bias is found to be associated with the feedback cycle of land–atmosphere interaction. Surface evaporative cooling likely affects the static instability in the atmospheric column, thereby limiting the convection and thus reducing rainfall. While categorizing, it is noticed that the efficacy of the model is found to be better in simulating normal monsoon as compared to contrasting monsoon (deficit and excess) year, thereby reducing the simulation skill for the entire period. EOF analysis revealed that first two leading modes of IMD rainfall are linked with large-scale variabilities, viz. El-Nino Southern Oscillation and Indian Ocean Dipole, respectively, but RegCM4 could not well reproduce these relationships. The spectral analysis showed 2–7 year periodicity in the model. However, the associated spectral peaks are close to the red noise spectrum due to their weak power suggesting limited model skill to capture large-scale variability. Overall, this study advocates that the RegCM4 could capture the climatological features of ISM fairly well, but needs further improvement in representing the IAV more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call