Abstract

Total concentration and chemical partitioning of heavy metals are commonly used in environmental quality assessment; however, their comparability and comprehensive application are far less discussed. Herein, bioavailability, pollution and eco-risk of As, Cd, Cr, Cu, Ni, Pb and Zn in surface sediments of Erhai Lake were evaluated referring to multiple indices following the experimental methods of complete digestion, optimized Community Bureau of Reference (BCR) and 1.0M HCl extractions. Results of bioavailability for most metals were similar and comparable from BCR and HCl extractions. While bioavailable concentrations of Cd and Pb from HCl extraction were significantly (p<0.01) lower than those from BCR extraction, indicating BCR extraction is more efficient. Results of enrichment factor (EF) and concentration enrichment ratio (CER) suggested that Cd was the highest polluted element followed by As, Pb and Zn, whereas Cr, Cu and Ni were mainly natural in origin. Similar concentrations of anthropogenic As from EF and CER assessments indicated anthropogenic As mainly existed in bioavailable form. However, anthropogenic Cd, Pb and Zn existed in both bioavailable and residue forms, resulting in the underestimation of anthropogenic metals by the CER assessment. The sediment quality guidelines (SQGs), potential ecological risk index (Er) and risk assessment code (RAC) showed inconsistent eco-risks for each of the metals except Cd. Combining pollution level and chemical partitioning with SQGs, Er and RAC assessments, high eco-risk of Cd, moderate eco-risk of As and Pb, and low eco-risk of Cr, Cu, Ni and Zn were graded. Our study highlights the limitation of single index and the necessity of integrating multiple indices following total concentration and chemical partitioning in metal pollution and eco-risk assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call