Abstract

Goal: Chronic wounds affect 6.5 million Americans. Wound assessment via algorithmic analysis of smartphone images has emerged as a viable option for remote assessment. Methods: We comprehensively score wounds based on the clinically-validated Photographic Wound Assessment Tool (PWAT), which comprehensively assesses clinically important ranges of eight wound attributes: Size, Depth, Necrotic Tissue Type, Necrotic Tissue Amount, Granulation Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin Viability. We proposed a DenseNet Convolutional Neural Network (CNN) framework with patch-based context-preserving attention to assess the 8 PWAT attributes of four wound types: diabetic ulcers, pressure ulcers, vascular ulcers and surgical wounds. Results: In an evaluation on our dataset of 1639 wound images, our model estimated all 8 PWAT sub-scores with classification accuracies and F1 scores of over 80%. Conclusions: Our work is the first intelligent system that autonomously grades wounds comprehensively based on criteria in the PWAT rubric, alleviating the significant burden that manual wound grading imposes on wound care nurses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.