Abstract

Bladder cancer exhibits substantial heterogeneity encompassing genetic expressions and histological features. This heterogeneity is predominantly attributed to alternative splicing (AS) and AS-regulated splicing factors (SFs), which, in turn, influence bladder cancer development, progression, and response to treatment. This study aimed to explore the immune landscape of aberrant AS in bladder cancer and establish the prognostic signatures for survival prediction. Bladder cancer-related RNA-Seq, transcriptome, and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to identify significantly enriched pathways of cancer-related AS events. The underlying interactions among differentially expressed genes (DEGs) and cancer-related AS events were assessed by a protein-protein interaction network. Univariate and multivariate Cox regression analyses were performed to identify crucial prognostic DEGs that co-occurred with cancer-related AS events (DEGAS) for overall survival. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to assess the efficiency of the prognostic signatures. The CIBERSORT algorithm was used to explore the abundance of immune infiltrating cells. A total of 3755 cancer-related AS events and 3110 DEGs in bladder cancer were identified. Among them, 379 DEGs co-occurred with cancer-related AS events (DEGAS), of which 102 DEGAS were associated with 14 dysregulated SFs. GSEA and KEGG analysis showed that cancer-related AS events were predominantly enriched in pathways related to immunity, tumorigenesis, and treatment difficulties of bladder cancer. Multivariate Cox regression analysis identified 8 DEGAS (CABP1, KCNN2, TNFRSF13B, PCDH7, SNRPA1, APOLD1, CX3CL1, and DENND5A) significantly associated with OS, and they were further integrated into the prediction model with good AUCs at 3-year, 5-year and 7-year ROC curves (all>0.7). Immune infiltration analysis revealed the significant enrichment of three immune cell types (B cells naïve, dendritic cells resting, and dendritic cell activated) in high-risk bladder cancer patients. This study not only unveiled comprehensive prognostic signatures of AS events in bladder cancer but also established a robust prognostic model based on survival-related DEGAS. These aberrant AS events, dysregulated SFs, and the identified 8 DEGAS may have significant clinical potential as therapeutic targets for bladder cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.