Abstract
BackgroundThyroid-associated ophthalmopathy (TAO) is a common and organ-specific autoimmune disease. Early diagnosis and novel treatments are essential to improve the prognosis of TAO patients. Therefore, the current work was performed to identify the key genes and pathways for the biological and clinical implications of TAO through comprehensive bioinformatics analysis and a series of clinical validations.MethodsGSE105149 and GSE185952 were obtained from the Gene Expression Omnibus (GEO) database for analysis. The data were normalized to identify the common differentially expressed genes (DEGs) between the two datasets, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to assess key pathways in TAO. Protein–protein interaction (PPI) networks and hub genes among the common DEGs were identified. Furthermore, we collected the general information and blood samples from 50 TAO patients and 20 healthy controls (HCs), and the expression levels of the proteins encoded by hub genes in serum were detected by enzyme-linked immunosorbent assay (ELISA). Then we further assessed the relationship between the ELISA data and the TAO development.ResultsSeveral common pathways, including neuroactive ligand-receptor interaction, the IL-17 signaling pathway, and the TNF signaling pathway, were identified in both datasets. In parallel, 52 common DEGs were identified. The KEGG analysis showed that these common DEGs are mainly enriched in long-term depression, the VEGF signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway, and cytokine-cytokine receptor interactions. The key hub genes PRKCG, OSM, DPP4, LRRTM1, CXCL6, and CSF3R were screened out through the PPI network. As confirmation, the ELISA results indicated that protein expression levels of PRKCG, OSM, CSF3R, and DPP4 were significantly upregulated in TAO patients compared with HCs. In addition, PRKCG and DPP4 were verified to show value in diagnosing TAO, and CSF3R was found to be a valuable diagnostic marker in distinguishing active TAO from inactive TAO.ConclusionsInflammation- and neuromodulation-related pathways might be closely associated with TAO. Based on the clinical verification, OSM, CSF3R, CXCL6, DPP4, and PRKCG may serve as inflammation- or neuromodulation-related biomarkers for TAO, providing novel insights for the diagnosis and treatment of TAO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.