Abstract

Salmonella Typhimurium (ST) infection in pigs poses a significant threat to animal health and food safety; the intricate mechanisms underlying host–immune responses and pathogen persistence remain poorly understood. To address this knowledge gap, we comprehensively analyzed the peripheral blood transcriptome in piglets infected with ST. We performed histopathological evaluation, blood parameter analysis, advanced RNA-sequencing techniques, and quantitative reverse transcription PCR (RT-qPCR)-based validation. The increasement in the monocyte counts at 2 days post-infection suggested its potential to serve as a hematological marker for ST infection in piglets. Functional and pathway enrichment analyses of the differentially expressed genes highlighted the pivotal roles of innate and adaptive immune responses, notably in pathways associated with Toll-like receptors, NIK/NF-κB signaling, cytokine signaling, and T cell proliferation. RT-qPCR-based validation using peripheral blood mononuclear cells provided additional insights into the immune system dynamics in response to ST infection, revealing the marked elevation of the interleukin (IL)-15, IL-27, and CXCL10 levels being significantly elevated in ST-infected piglets. Our comprehensive analysis underscores the multifaceted impact of ST infection on piglets and offers valuable insights into the host–pathogen interactions and the role of host immune system during ST infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.