Abstract

A three-dimensional (3-D) above-threshold analysis has been performed for laterally antiguided laser structures of the antiresonant-reflecting-optical-waveguide type, of relatively large core width (/spl sim/ 10 /spl mu/m), for high-power, single-spatial-mode operation. A 3-D numerical code has been developed, which takes into account carrier diffusion in the quantum well as well as edge radiation losses. The laser characteristics are calculated as functions of the above-threshold drive level. Within the simulation, 3-5 higher order optical modes on a "frozen background" are computed by the Arnoldi algorithm. Because of the nonuniform gain saturation of the lasing mode, the modal gains for higher order modes increase with the drive current due to increasing overlap of their fields with the two-dimensional gain distribution. The onset of threshold for higher order modes puts an upper limit on the range for stable single-mode operation. The above-threshold analysis is done for various values of the width of the reflector region, below and above the lateral-antiresonance condition. It is found that the maximum intermodal discrimination, which in turn provides the maximum single-mode power, is obtained when the reflector-region width is /spl sim/25 % larger that its value at antiresonance. Then, for 10-/spl mu/m-core devices, stable, single-mode operation is found to occur to drive levels as high as 41 /spl times/ threshold, with single-mode output powers as high as 1.45 W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call