Abstract

To understand the break-up fusion reaction dynamics, the forward recoil range distribution (FRRD) measurements of 12C + 165Ho system at the incident projectile energy of ≈ 88 MeV has been performed. The recoil catcher activation technique followed by the off-line gamma ray spectroscopy was implemented. It is observed that the FRRD measurements of the evaporation residues (ERs) populated via xn and pxn channels have a single Guassian peak at large cumulative thickness. This is attributed to complete momentum transfer from the projectile to the target nucleus. However, in case of the FRRD measurements of the ERs populated via αxn, αpxn and 2αxn emitting channels, in addition to peak corresponding to complete momentum transfer, the Gaussian peaks at lower cumulative thicknesses are also observed. This is accredited to the breakup fusion. Moreover, the effect of projectile breakup on complete fusion cross section is also studied. The suppression in fusion cross section is observed when compared with the universal fusion function, thus indicating the breakup probability of 12C projectile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call