Abstract

Codes for RNA secondary structure prediction based on energy minimization are usually time and resource intensive. For this reason several codes have been simplified: in some cases they do not predict complex structures like pseudoknots, other times they predict structures with reduced lengths, or with simple pseudoknots. Each of these codes has its strengths and weaknesses. Providing scientists with tools that combine the strengths of the several codes is a worthwhile objective. To address this need, we present compPknots, a parallel framework that uses a combination of existing codes like Pknots-RE and Pknots-RG, to predict RNA secondary structures concurrently and automatically compare them with reference structures from databases or literature. In this paper compPknots is used to compare the predictions of 217 RNA structures from the PseudoBase database. Its parallel master-slave architecture provide scientists with higher prediction accuracies in shorter time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.