Abstract

A novel approach aiding in the prediction of RNA secondary structures is presented. Although phylogenetic methods are the most successful at deriving RNA secondary structures, the are not applicable when the number of sequences or the sequence variability is too low. Methods based on energy minimization are therefore of great interest. However, some of the suboptimal RNA secondary structures computed with classic methods are unsaturated structures, i.e. some structures are included into others. Thus, the incorporation of constraints during the process of folding is not possible, while the incorporation of constraints before the process of folding often introduces a bias into the energy function. This paper describes a new procedure which allows for the incorporation of constraints before and during the process of RNA folding. SAPSSARN is an interactive program which offers a framework, both to specify a secondary structure through a set of folding constraints and to compute all the supoptimal saturated RNA secondary structures which satisfy all the folding constraints. At the start, it relies on the computation of the probabilities of pairing of each base with all others according to McCaskill's algorithm. The constraint satisfaction formulation of the problem deals dynamically with a chosen set of folding constraints and, finally, a search algorithm computes all the suboptimal saturated secondary structures which satisfy those folding constraints. Within such a framework, it is possible to test new ideas about RNA folding and secondary structures, including pseudoknots, can be computed. The program is illustrated with RNA sequences on which we obtained results in agreement with known structures by using a protocol which mimics the hierarchical folding of RNA molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call