Abstract

Low molecular weight dicarboxylic acids constitute a large fraction of atmospheric organic aerosols, which impact atmospheric radiative forcing and hence Earth’s climate. Radiocarbon (14C) is a unique approach to unambiguously distinguishing the relative contributions of biomass-derived and fossil sources. Here, we developed a compound-specific radiocarbon analysis (CSRA) method for individual dicarboxylic acids in atmospheric particulates. Specifically, the method starts with a dibutyl ester derivatization technique, followed by separation and harvesting of single compounds employing a preparative capillary gas chromatography in sufficient amounts for offline 14C measurement with accelerator mass spectrometry. The optimized preparative steps yielded recoveries of >60% and purities of >99% for target molecules. The radiocarbon isotope compositions determined for reference standards taken through the entire method agree well with the original composition of each standard (R2 = 0.9998). The applicability of the approach was demonstrated with ambient aerosol samples representing contrasting air mass regimes. This yielded two radically different yet system-consistent precursor sources. A minimum size of 50 μg of C of ambient dicarboxylic acids is needed for credible 14C measurement. The established method for CSRA of dicarboxylic acids demonstrates a new analytical dimension for studies of the source and evolution of atmospheric secondary organic aerosols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.