Abstract

Of central importance to palaeodietary reconstruction is a clear understanding of relative contributions of different terrestrial (i.e., C3 vs. C4 plants) and aquatic (i.e., freshwater vs. marine) resources to human diet. There are, however, significant limitations associated with the ability to reconstruct palaeodiet using bulk collagen stable isotope compositions in regions where diverse dietary resources are available. Recent research has determined that carbon-isotope analysis of individual amino acids has considerable potential to elucidate dietary protein source where bulk isotopic compositions cannot. Using δ13CAA values for human and faunal remains from Zvejnieki, Latvia (8th – 3rd millennia BCE), we test several isotopic proxies focused on distinguishing freshwater protein consumption from both plant-derived and marine protein consumption. We determined that the Δ13CGly-Phe and Δ13CVal-Phe proxies can effectively discriminate between terrestrial and aquatic resource consumption, and the relationship between essential δ13CAA values and the Δ13CGly-Phe and Δ13CVal-Phe proxies can differentiate among the four protein consumption groups tested here. Compound-specific amino acid carbon-isotope dietary proxies thus enable an enhanced understanding of diet and resource exploitation in the past, and can elucidate complex dietary behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.