Abstract

A novel class of compound structures, which consists of 2 types of unit cell geometries occupying different sites in the lattice (i.e. compound lattice) was investigated. The arrangement and volume ratio of the 2 unit cell geometries were varied, and it was found that the compound lattices can exhibit up to 4 distinct geometries – 2 from the unit cells and 2 supra-structures from the arrangement of each type of unit cell. In stiffness optimization, the material re-organization tends to emphasize the stiffest of the 4 geometries and collapse the hierarchical compound lattice into a single-level structure. In isotropy optimization, unit cells had to be arranged into supra-structures with an anisotropy profile opposite to that of their geometries. These insights led to the introduction of the compound nested lattices, which exhibited higher specific moduli than previous isotropic designs. The compound nested 1pSC:512pFCC lattice, in particular, reached 97.9 % of the Hashin-Shtrikman upper bound at relative density = 0.6, which is the closest approach to the theoretical maximum ever reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.