Abstract
A metamaterial is an engineered material made by embedding engineered cores (heavy cores coated with a soft coating) into a matrix, which generates bandgaps such that stress waves with frequencies falling into the bandgaps can be mitigated. Metaconcrete made by embedding engineered aggregates into a mortar matrix can be used to attenuate stress waves generated by blast loads. This study presents a method for determining the metaconcrete bandgaps and designing a metaconcrete unit cell by using commercially available software to achieve the desired bandgaps. The dispersion relation of metaconcrete unit cells was investigated. With the designed configuration, the performance of metaconcrete rod structures under blast load was studied by using a software simulation. The results demonstrated the effectiveness of the designed unit cell with the selected soft coating and heavy core in mitigating blast-induced elastic and nonlinear inelastic stress-wave propagation. The responses of metaconcrete rod structures with one type of unit cell and grouped two types of unit cells with multiple bandgaps subjected to blast load were also studied. The results show that the grouped unit cells with multiple bandgaps led to better performance in wave mitigation than only one type of unit cell in the example metaconcrete rod structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.