Abstract

Compost teas (CTs) are organic solutions that constitute an interesting option for sustainable agriculture. Those that come from garden waste have been applied in vitro and in vivo on pepper plants to determine its suppressive effect against both Phytophthora capsici and Rhizoctonia solani. The studied CT showed relevant content in NO3−, K2O, humic acids, and microorganisms such as aerobic bacteria, N-fixing bacteria, and actinobacteria, which play a role in plant growth and resistance. This rich abundance of microbiota in the CT induced a reduction in the relative growth rate of both P. capsici and R. solani (31.7% and 38.0%, respectively) in in vitro assays compared to control. In addition, CT-irrigated plants displayed increased growth parameters and showed the first open flower one week before those treatments without CTs, which suggests that its application advanced the crop cycle. Concerning pathogen infection, damage caused by both pathogens became more apparent with a one-week inoculation compared to a four-week inoculation, which may indicate that a microbiological and chemical balance had been reached to cope with biotic stresses. Based on these results, we conclude that CT application induces plant growth and defense in pepper plants against P. capsici and R. solani because of its relevant soluble nutrient content and microbiota richness, which provides a novel point for plant nutrition and protection in horticultural crops.

Highlights

  • Large amounts of bio-waste produced every year and should be managed and valorized to provide a well-humified material employable in agriculture

  • We conclude that Compost teas (CTs) application induces plant growth and defense in pepper plants against P. capsici and R. solani because of its relevant soluble nutrient content and microbiota richness, which provides a novel point for plant nutrition and protection in horticultural crops

  • This study confirmed the positive effect of CT application on total biomass and pepper fruit production and for its direct implication for the control of pathogen development by causing a reduction of both P. capsici and R. solani in in vitro and in vivo essays

Read more

Summary

Introduction

Large amounts of bio-waste produced every year and should be managed and valorized to provide a well-humified material employable in agriculture. Recycling organic waste as organic fertilizer is a relevant strategy for sustainable crop production. The application of these fertilizers to the soil could be applied as compost, green manure, farm yard manure, or cereal residues. Some of this biowaste-biosolids, pruning residues, green waste, sewage sludge-displayed good results when properly composted. This material is obtained through composting, a controlled bioxidative process that requires proper humidity, aeration, and heterogeneous solid organic substrates [2]. Compost is a source of macro- and micronutrients for plants and for the microorganisms that support soil health by serving as a quick and available source of carbon [4]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call