Abstract

The bandgap of CuIn1- x Gax Se2 (CIGS) chalcopyrite semiconductors can be tuned between ≈1.0 and ≈1.7 eV for Ga contents ranging between x = 0 and x = 1. While an optimum bandgap of 1.34 eV is desirable for achieving maximum solar energy conversion in solar cells, state-of-the-art CIGS-based devices experience a drop in efficiency for Ga contents x > 0.3 (i.e., for bandgaps >1.2 eV), an aspect that is limiting the full potential of these devices. The mechanism underlying the limited performance as a function of CIGS composition has remained elusive: both surface and bulk recombination effects are proposed. Here, the disentanglement between surface and bulk effects in CIGS absorbers as a function of Ga content is achieved by comparing photogenerated charge carrier dynamics in air/CIGS and surface-passivated ZnO/CdS/CIGS samples. While surface passivation prevents surface recombination of charge carriers for low Ga content (x < 0.3; up to 1.2 eV bandgap), surface recombination dominates for higher-bandgap materials. The results thus demonstrate that surface, rather than bulk effects, is responsible for the drop in efficiency for Ga contents larger than x ≈ 0.3.

Highlights

  • The bandgap of CuIn1-xGaxSe2 (CIGS) chalcopyrite semiconductors can be are an appealing choice for photovoltaics owing to their high absorption coefficient, tuned between ≈1.0 and ≈1.7 eV for Ga contents ranging between x = 0 as a result of their direct bandgap, enabling and x = 1

  • The disentanglement between surface and bulk effects in CIGS absorbers as a function of Ga content is achieved by comparing photogenerated charge carrier dynamics in air/CIGS and surface-passivated ZnO/CdS/CIGS samples

  • Our results demonstrate that while bulk charge dynamics are barely affected by the Ga content of CIGS alloys, surface recombination is stronger for higher Ga contents; this aspect is true for both air/CIGS and ZnO/CdS/ CIGS interfaces

Read more

Summary

Introduction

The disentanglement between surface and bulk effects in CIGS absorbers as a function of Ga content is achieved by comparing photogenerated charge carrier dynamics in air/CIGS and surface-passivated ZnO/CdS/CIGS samples. Our results demonstrate that while bulk charge dynamics are barely affected by the Ga content of CIGS alloys, surface recombination is stronger for higher Ga contents; this aspect is true for both air/CIGS and ZnO/CdS/ CIGS interfaces.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.