Abstract
Converting food waste into butanol via acetone, butanol, and ethanol (ABE) fermentation provides the potential to recover energy and value-added chemicals from food waste. However, the high variability of food waste compositions has hindered the consistency and predictability of butanol production, impeding the development of a robust industrial fermentation process. This study characterized the compositional variation of collected food wastes and determined correlations between food waste compositional attributes and butanol yields for a better prediction of food waste fermentation with Clostridium. The total sugar, starch, fiber, crude protein, fat and ash contents (on dry basis) in the food waste samples were in a range of 0.5–53.5%, 0–25.2%, 0.6–26.9%, 5.5–21.5%, 0.1–37.9%, and 1.4–13.7%, respectively. The high variability of food waste composition resulted in a wide range (3.5–11.5 g/L) of butanol concentrations with an average of 8.2 g/L. Pearson’s correlation analysis revealed that the butanol concentrations were strongly and positively correlated with equivalent glucose and starch contents in food waste, strongly and negatively correlated with fiber content, and weakly correlated with total sugar, protein, fat, and ash contents. The regression models constructed based on equivalent glucose and fiber contents reasonably predicted the butanol concentration, with the R2 of 0.80. Our study investigated the variability of food waste composition and, for the first time, unveiled relationships between food waste compositional attributes and fermentation yields, contributing to a greater understanding of food waste fermentation, which, in turn, assists in developing new strategies for increased consistency and predictability of food waste fermentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.