Abstract
This study aims to explore the condensation and fractionation trends of persistent organic pollutants (POPs) in the karst soils. The tiankeng is a karst surface expression that can act as a focal point for introduction of contaminants to a karst aquifer, which may serve both as condenser for vapor phase POPs and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs in soils from the upper rim and floor of tiankeng is of interest in understanding the role of tiankeng in the long-distance transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in the surface soils from the upper rim and floor of Dashiwei tiankeng in Southern China were analyzed. The total PAH concentrations in soils were 23.40–190 ng g−1, with phenanthrene being the most abundant. The distribution patterns of PAH compounds in the soil samples matched well with their properties. It indicated the heavy PAHs were susceptible to retention by the floor soils of tiankeng than light PAHs. A plot of Cfloor/Crim against PAH molecular weight gave a good positive relationship in the molecular weight range of 152–276. It is suggested that the floor soils can be focal points of more concentrated PAH and deserve attention. The concentrations of total PAHs in the floor soils (43.40–190 ng g−1, mean 87.76 ng g−1) were higher than those in the upper rim (23.40–88.94 ng g−1, mean 57.74 ng g−1). In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation is proposed as the major mechanism for the compositional fractionation of PAHs in the soils from the upper rim and floor of tiankeng.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have