Abstract

Composite electrolytes comprising a polymer plus Li salt matrix and embedded fillers have the potential of realizing high lithium-ion conductivity, good mechanical properties, wide electrochemical operational window, and stability against metallic lithium, all of which are essential for the development of high-energy-density all-solid-state lithium-ion batteries. In this study, a solvent-free approach has been used to prepare composite electrolytes with tetragonal and cubic phase garnets synthesized via nebulized spray pyrolysis with polyethylene oxide (PEO) being the polymer component. Electrochemical impedance spectroscopy (EIS) is used to examine a series of composites with different garnets and weight fractions. The results show that with the increase in the ceramic weight fraction in the composites, ionic conductivity is reduced and alternative Li-ion transport pathways become accessible for composites as compared to the filler-free electrolytes. An attempt is made to understand the ion transport mechanism within the composites. The role of the chemical and morphological properties of the ceramic filler in polymer-rich and ceramic-rich composite electrolytes is explained by studying the blends of nonconducting ceramics with the Li-conducting polymer, indicating that the intrinsic conductivity of the ceramic filler significantly contributes to the overall conductive process in the ceramic-rich systems. Further, the stability of the garnet/PEO interface is studied via X-ray photoelectron spectroscopy, and its impact on the lithium-ion transport is studied using EIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.