Abstract

Planktonic microorganisms in aquatic ecosystems form complex assemblages of highly interactive taxa and play key roles in biogeochemical cycles. However, the microbial interactions within bacterial and microeukaryotic communities, and the mechanisms underpinning the responses of abundant and rare microbial taxa to environmental disturbances in the river estuary remain unknown. Here, 16S and 18S rRNA gene sequencing were used to investigate the compositional changes and the co-occurrence patterns of bacterial and microeukaryotic communities. The results showed that the rare taxa in the bacterial communities were more prevalent than those in the microeukaryotic communities and may influence the resilience and resistance of microorganisms to environmental variations in estuarine ecosystems. The environmental variations had strong effects on the microeukaryotic communities and their assembly mechanisms but not on the bacterial communities in our studied area. However, based on co-occurrence network analyses, the bacterial communities had stronger links and more complex interactions than microeukaryotic communities, suggesting that bacterial networks may help improve the buffering capacities of the estuarine ecosystem against environmental change. The keystone taxa of bacteria mainly belonged to rare subcommunities, which further illustrates that rare taxa may play fundamental roles in network persistence. Overall, these results provide insights into the microbial responses of aquatic ecosystems to environmental heterogeneity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call